223 research outputs found

    Structure and properties of a novel fulleride Sm6C60

    Full text link
    A novel fulleride Sm6C60 has been synthesized using high temperature solid state reaction. The Rietveld refinement on high resolution synchrotron X-ray powder diffraction data shows that Sm6C60 is isostructural with body-centered cubic A6C60 (A=K, Ba). Raman spectrum of Sm6C60 is similar to that of Ba6C60, and the frequencies of two Ag modes in Sm6C60 are nearly the same as that of Ba6C60, suggesting that Sm is divalent and hybridization between C60 molecules and the Sm atom could exist in Sm6C60. Resistivity measurement shows a weak T-linear behavior above 180 K, the transport at low temperature is mainly dominated by granular-metal theory.Comment: 9 pages, 3 figures, submitted to Phys. Rev. B (March 12, 1999

    Suppression of the structural phase transition and lattice softening in slightly underdoped Ba(1-x)K(x)Fe2As2 with electronic phase separation

    Get PDF
    We present x-ray powder diffraction (XRPD) and neutron diffraction measurements on the slightly underdoped iron pnictide superconductor Ba(1-x)K(x)Fe2As2, Tc = 32K. Below the magnetic transition temperature Tm = 70K, both techniques show an additional broadening of the nuclear Bragg peaks, suggesting a weak structural phase transition. However, macroscopically the system does not break its tetragonal symmetry down to 15 K. Instead, XRPD patterns at low temperature reveal an increase of the anisotropic microstrain proportionally in all directions. We associate this effect with the electronic phase separation, previously observed in the same material, and with the effect of lattice softening below the magnetic phase transition. We employ density functional theory to evaluate the distribution of atomic positions in the presence of dopant atoms both in the normal and magnetic states, and to quantify the lattice softening, showing that it can account for a major part of the observed increase of the microstrain.Comment: 7 pages, 4 figure

    Effective-Medium Theory for the Normal State in Orientationally Disordered Fullerides

    Full text link
    An effective-medium theory for studying the electronic structure of the orientationally disordered A3C60 fullerides is developed and applied to study various normal-state properties. The theory is based on a cluster-Bethe-lattice method in which the disordered medium is modelled by a three-band Bethe lattice, into which we embed a molecular cluster whose scattering properties are treated exactly. Various single-particle properties and the frequency-dependent conductivity are calculated in this model, and comparison is made with numerical calculations for disordered lattices, and with experiment.Comment: 12 pages + 2 figures, REVTeX 3.

    The polymer phase of the TDAE-C60_{60} organic ferromagnet

    Get PDF
    The high-pressure Electron Spin Resonance (ESR) measurements were preformed on TDAE-C60_{60} single crystals and stability of the polymeric phase was established in the PTP - T parameter space. At 7 kbar the system undergoes a ferromagnetic to paramagnetic phase transition due to the pressure-induced polymerization. The polymeric phase remains stable after the pressure release. The depolymerization of the pressure-induced phase was observed at the temperature of 520 K. Below room temperature, the polymeric phase behaves as a simple Curie-type insulator with one unpaired electron spin per chemical formula. The TDAE+^+ donor-related unpaired electron spins, formerly ESR-silent, become active above the temperature of 320 K and the Curie-Weiss behavior is re-established.Comment: Submitted to Phys. Rev.

    NaIrO3 - A pentavalent post-perovskite

    Full text link
    Sodium iridium(V) oxide, NaIrO3, was synthesized by a high pressure solid state method and recovered to ambient conditions. It is found to be isostructural with CaIrO3, the much-studied structural analogue of the high-pressure post-perovskite phase of MgSiO3. Among the oxide post-perovskites, NaIrO3 is the first example with a pentavalent cation. The structure consists of layers of corner- and edge-sharing IrO6 octahedra separated by layers of NaO8 bicapped trigonal prisms. NaIrO3 shows no magnetic ordering and resistivity measurements show non-metallic behavior. The crystal structure, electrical and magnetic properties are discussed and compared to known post-perovskites and pentavalent perovskite metal oxides.Comment: 22 pages, 5 figures. Submitted to Journal of Solid State Chemistr

    Mott Transition in Degenerate Hubbard Models: Application to Doped Fullerenes

    Full text link
    The Mott-Hubbard transition is studied for a Hubbard model with orbital degeneracy N, using a diffusion Monte-Carlo method. Based on general arguments, we conjecture that the Mott-Hubbard transition takes place for U/W \propto \sqrt{N}, where U is the Coulomb interaction and W is the band width. This is supported by exact diagonalization and Monte-Carlo calculations. Realistic parameters for the doped fullerenes lead to the conclusion that stoichiometric A_3 C_60 (A=K, Rb) are near the Mott-Hubbard transition, in a correlated metallic state.Comment: 4 pages, revtex, 1 eps figure included, to be published in Phys.Rev.B Rapid Com

    Electrical resistivity at large temperatures: Saturation and lack thereof

    Full text link
    Many transition metal compounds show saturation of the resistivity at high temperatures, T, while the alkali-doped fullerenes and the high-Tc cuprates are usually considered to show no saturation. We present a model of transition metal compounds, showing saturation, and a model of alkali-doped fullerenes, showing no saturation. To analyze the results we use the f-sum rule, which leads to an approximate upper limit for the resistivity at large T. For some systems and at low T, the resistivity increases so rapidly that this upper limit is approached for experimental T. The resistivity then saturates. For a model of transition metal compounds with weakly interacting electrons, the upper limit corresponds to a mean free path consistent with the Ioffe-Regel condition. For a model of the high Tc cuprates with strongly interacting electrons, however, the upper limit is much larger than the Ioffe-Regel condition suggests. Since this limit is not exceeded by experimental data, the data are consistent with saturation also for the cuprates. After "saturation" the resistivity usually grows slowly. For the alkali-doped fullerenes, "saturation" can be considered to have happened already for T=0, due to orientational disorder. For these systems, however, the resistivity grows so rapidly after "saturation" that this concept is meaningless. This is due to the small band width and to the coupling to the level energies of the important phonons.Comment: 22 pages, RevTeX, 19 eps figures, additional material available at http://www.mpi-stuttgart.mpg.de/andersen/fullerene

    Evidence for MBM_B and MCM_C phases in the morphotropic phase boundary region of (1x)[Pb(Mg1/3Nb2/3)O3]xPbTiO3(1-x)[Pb(Mg_{1/3}Nb_{2/3})O_3]-xPbTiO_3 : A Rietveld study

    Full text link
    We present here the results of the room temperature dielectric constant measurements and Rietveld analysis of the powder x-ray diffraction data on (1x)[Pb(Mg1/3Nb2/3)O3]xPbTiO3(1-x)[Pb(Mg_{1/3}Nb_{2/3})O_3]-xPbTiO_3(PMN-xxPT) in the composition range 0.20x0.450.20 \leq x \leq 0.45 to show that the morphotropic phase boundary (MPB) region contains two monoclinic phases with space groups Cm (or MBM_B type) and Pm (or MCM_C type) stable in the composition ranges 0.27x0.300.27 \leq x \leq 0.30 and 0.31x0.340.31 \leq x \leq 0.34, respectively. The structure of PMN-xxPT in the composition ranges 0x0 \leq x \leq 0.26, and 0.35x10.35 \leq x \leq1 is found to be rhombohedral (R3m) and tetragonal (P4mm), respectively. These results are compared with the predictions of Vanderbilt & Cohen's theory.Comment: 20 pages, 11 pdf figure

    High pressure phases in highly piezoelectric Pb(Zr0.52Ti0.48)O3

    Get PDF
    Two novel room-temperature phase transitions are observed, via synchrotron x-ray diffraction and Raman spectroscopy, in the Pb(Zr0.52Ti0.48)O3 alloy under hydrostatic pressures up to 16 GPa. A monoclinic (M)-to-rhombohedral (R1) phase transition takes place around 2-3 GPa, while this R1 phase transforms into another rhombohedral phase, R2, at about 6-7 GPa. First-principles calculations assign the R3m and R3c symmetry to R1 and R2, respectively, and reveal that R2 acts as a pressure-induced structural bridge between the polar R3m and a predicted antiferrodistortive R-3c phase.Comment: REVTeX, 4 pages with 3 figures embedded. Figs 1 and 3 in colo

    Far-infrared vibrational properties of high-pressure-high-temperature C60 polymers and the C60 dimer

    Get PDF
    We report high-resolution far-infrared transmission measurements of the 2 + 2 cycloaddition C-60 dimer and two-dimensional rhombohedral and one-dimensional orthorhombic high-pressure high-temperature C60 polymers. In the spectral region investigated(20-650 cm(-1)), we see no low-energy interball modes, but symmetry breaking of the linked C-60 balls is evident in the complex spectrum of intramolecular modes. Experimental features suggest large splittings or frequency shifts of some IhC60-derived modes that are activated by symmetry reduction, implying that the balls are strongly distorted in these structures. We have calculated the vibrations of all three systems by first-principles quantum molecular dynamics and use them to assign the predominant IhC60 symmetries of observed modes. Pur calculations show unprecedentedly large downshifts of T-1u(2)-derived modes and extremely large splittings of other modes, both of which are consistent with the experimental spectra. For the rhombohedral and orthorhombic polymers, the T-1u(2)-derived mode that is polarized along the bonding direction is calculated to downshift below any T-1u(1)-derived modes. We also identify a previously unassigned feature near 610 cm(-1) in all three systems as a widely split or shifted mode derived from various silent IhC60 vibrations, confirming a strong perturbation model for these linked fullerene structures
    corecore